skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Snapp, Sieglinde"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Long‐term agricultural field experiments (LTFEs) have been conducted for nearly 150 years. Yet lack of coordination means that synthesis across such experiments remains rare, constituting a missed opportunity for deriving general principles of agroecosystem structure and function. Here, we introduce the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) project, which uses legacy data from North American LTFEs to address research questions about the multifunctionality of agriculture. The DRIVES Project is a network of researchers who have compiled a database of primary (i.e., observations) and secondary (i.e., transformed observations or modeling results) data from participating sites. It comprises 21 LTFEs that evaluate how crop rotational diversity impacts cropping system performance. The Network consists of United States Department of Agriculture, university, and International Maize and Wheat Improvement Center scientists (20 people) who manage and collect primary data from LTFEs and a core team (nine people) who organize the network, curate network data, and synthesize cross‐network findings. As of 2024, the DRIVES Project database contains 495 site‐years of crop yields, daily weather, soil analysis, and management information. The DRIVES database is findable, accessible, interoperable, and reusable, which allows integration with other public datasets. Initial research has focused on how rotational diversity impacts resilience in the face of adverse weather, nutritional quality, and economic feasibility. Our collaborative approach in handling LTFE data has established a model for data organization that facilitates broader synthesis studies. We openly invite other sites to join the DRIVES network and share their data. 
    more » « less
  2. Dataset AbstractThis data set contains information about agronomic yields for the Main Cropping System Experiment which include treatments 1-4 (corn – wheat – soybean rotations) and after 1994 treatment 6 (alfalfa). Agronomic yields are measured during normal crop harvest; yields are determined by machine harvesters appropriate to each crop as described in the Agronomic protocol.original data source http://lter.kbs.msu.edu/datasets/23 
    more » « less
  3. Dataset Abstract Aboveground annual net primary production (ANPP) has been measured on the LTER main site since 1990 and on the successional and forested sites since 1993. ANPP is measured at peak biomass for a given treatment. In some systems with multiple harvests or complex communities that have peaks occurring at different times of the year, measurements are taken at multiple times per year. Additional ANPP measurements are made where appropriate using leaf litter traps, estimates of diameter from tree basal diameter and for the poplar treatment occasional destructive harvests. See the ANPP protocol for descriptions of the sampling and measurement methods for each of the treatments. original data source http://lter.kbs.msu.edu/datasets/22 
    more » « less
  4. Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison. 
    more » « less